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Abstract
We continue the theme exploited very effectively by Professor Pusey over the
years of using laser light to measure the size of colloidal particles. A description
of a new measurement technique using a confocal scanning laser microscope
(CSLM) is given in which the Rayleigh resolution limit of a numerical aperture
1.3 oil-immersion objective is effectively doubled. The method exploits the
‘natural’ bandwidth of an imaging system with a very low number of ‘degrees
of freedom’ (generalized Shannon number) which is realized in the CSLM
by using the high-aperture objective lens both to illuminate the particles and
to collect the scattered light from them. The available extra resolution is not
visible in the conventional recorded image of the instrument and the full double-
bandwidth ‘information’ content in the image plane is extracted in our method
by using a specially calculated optical mask as an instantaneous analogue
computer. We have modified a commercial Bio-Rad 600 confocal microscope
to work in this way and present here the first measurements obtained with it.
We compare images of 100 nm diameter standard PVC fluorescent calibration
spheres with the new and the older modalities. The results confirm the expected
increase in optical resolution.

1. Introduction

The science of colloidal particles has had a long evolving history and is of importance in
many diverse areas of application. With ‘nanoscience’ moving to centre stage in modern
physical research, the subject seems now to be of ever increasing importance, particularly
with new surface stabilization methods which allow novel optical properties to be exploited.
The dedicatee of this special issue, Peter Pusey, has contributed significantly to this field over
several decades. As is well known, he has been a pioneer in the application of laser light
scattering to investigate physical properties of colloidal particles and the interactions between
3 Present address: Department of Electrical Engineering, University of Nottingham, Nottingham, UK.
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them. These light scattering techniques are now of great value in experimental colloid science
and a number of commercial light scattering instruments are available.

One of these important properties is particle size. In this contribution we present
ultrahigh-resolution optical images of colloidal particles using a new modality of operation of
a high-numerical-aperture confocal scanning laser microscope (CSLM) in which the Rayleigh
resolution limit of the microscope objective can be effectively doubled. Of course the new
modality can be used for fluorescence microscopy in other disciplines,with the same increase in
resolving power, and we are at present also obtaining our first images of biological specimens,
which will be published elsewhere.

In a confocal scanning microscope [1] the object is illuminated by a raster-scanned focused
beam and the transmitted, reflected or fluorescent light which passes through a pinhole at the
centre of the image plane is then detected. Imaging systems can be allocated [2] an information
theoretic, noise-dependent ‘generalized Shannon number’, or number of degrees of freedom,
which can be used to determine the optical resolution limit. In this approach the conventional
image is regarded merely as experimental data from which the actual image must be calculated.
As we shall see, this calculation may be done optically by use of a suitable image-plane mask.
The new method takes account of the fact that the spatial-frequency response of the imaging
operator of the CSLM system essentially completely fills a band of twice the width of that of
the objective lens.

2. Theory of the optical mask

In a series of earlier theoretical papers on optical imaging (for references see, for example, [3])
we have shown that when focused beams are used for illumination with either coherent or
incoherent light and at all numerical apertures, the conventional theory of optical resolution,
including confocal scanning, underestimates the correct diffraction limit and that a suitably
designed system can robustly achieve an increase in linear resolution approaching twice the
Rayleigh criterion.

These developments are based on work over recent years with the group of Professor
Bertero at the University of Genoa and other colleagues and uses the techniques of the inter-
disciplinary field of ‘inverse problems’ (see, for example, the well-established journal Inverse
Problems published by the Institute of Physics in the UK). In fact, our original introduction to
this field was motivated by the need to invert light scattering data of the type mentioned above.

Linear inverse problems, of which optical imaging is an example, are described by
Fredholm integral equations of the first kind (in some discretized form), which relate
experimental data to their physical interpretation. One attempts to quantify the ‘information
content’ of the data using a generalized form of Shannon’s information theory [2]. For example,
apart from its application to optical imaging, we have used similar mathematical approaches
to make progress in other fields of modern theoretical physics such as high-temperature
superconductivity [4] and the design of radar and sonar antennas [5].

Much of our earlier work in optical imaging was devoted to establishing these principles
of ‘superresolution’ in low-aperture optical systems where the calculations could, for the
most part, be done analytically. More recently, with the advent of sufficiently powerful
computers, we have been able to handle the computations required for high-aperture systems,
both incoherent and coherent. For example, with the collaboration of the Philips optical storage
group, in a European Union project acknowledged below, we are attempting to apply solutions
in the coherent case to the problem of increasing optical storage densities of DVDs.

In the application of the methods of inverse problems to scanning imaging systems
one considers the image plane to contain ‘data’ which must be used to determine as much
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information as possible about the object which generated it. It is also made clear that this
information, in general, cannot be used to reconstruct the input completely since, as we shall
see in a moment, the mathematical operator which transforms the input into the data is linear
and compact and is thus a ‘smoothing’ operator.

The theory shows that there is a ‘natural’ basis for each such operator which provides
a complete set of orthonormal components in which to expand the input and output (not
necessarily the same for both) which are ordered in such a way that the components which are
most robust to noise interference are those with the lower indices which, as in a Fourier
expansion, are those which vary less rapidly. A generalized, noise-dependent ‘Shannon
number’ can be defined, which is the index which limits the so-called ‘signal subspace’.
Without further a priori information the noise prevents reliable recovery of the components
with indices higher than this value, which will reside in the ‘noise subspace’, unless present
in inordinate strength. This gives rise to a defined ‘resolution’ limit. We may note here
however that we have found [6], perhaps surprisingly, that if the input is known to be positive
all these higher components can, in fact, be recovered by using the further assumptions of
a minimum-L2-norm, positive solution. We have not yet applied this result to the present
problem.

The process of reconstruction of the object in a scanning optical system using these
concepts can be effected by placing a specially calculated, generally complex, optical mask
in the image plane and integrating the transmitted and/or reflected amplitudes using suitable
collection optics [7].

We will give a brief outline of the definition and calculation of an image-plane mask for
a generic imaging operator, A, defined by

(A f )(y) =
∫

A(x, y) f (x) dx (1)

where x and y can be multi-dimensional. We call the object f (x) and the image g(y) and the
imaging is described by the operator equation

g = A f. (2)

The image-plane mask is calculated using the singular-value decomposition (SVD) of the
operator A, which we consider in the first place to act upon square integrable functions, i.e. it
maps functions from one L2-space into another. The SVD is given by the set of solutions
{αk; uk, vk}∞k=0 of the coupled integral equations

Auk = αkvk, A∗vk = αkuk, (3)

where A∗ denotes the adjoint of A. The uk and vk are called singular functions and provide
orthonormal bases for f and g, respectively. The αk are called singular values and for a
compact operator A they accumulate to zero with increasing k; they represent the strength
with which each component is transferred into the image and hence how well it can withstand
the addition of noise. SVD can be accomplished using standard numerical packages found in
many software libraries.

Given this decomposition of the imaging operator, by expanding object and image in their
respective bases and using their orthonormality it can be seen after a little algebra that the
solution of (2) is

f (x) =
∞∑

k=0

1

αk
uk(x)

∫
g(y)vk(y) dy (4)

and specifically, on the optical axis,

f (0) =
∞∑

k=0

1

αk
uk(0)

∫
g(y)vk(y) dy. (5)
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For a scanning system the determination of f (0) at each point of the scan is sufficient to
reconstruct the image. Exchanging the sum in (5) with the integral we obtain

f (0) =
∫

g(y)M(y) dy, (6)

where

M(y) =
∞∑

k=0

1

αk
uk(0)vk(y). (7)

The function M(y) is called an image-plane optical mask and it can be seen that (6) explains
the object reconstruction process described earlier. In practice the summation is truncated at
a value of k which depends on the signal-to-noise ratio of the detected signal. Using the fact
that (6) is the scalar product (M, g) in L2 of M and g and that g = A f , we can see that

f (0) = (M, g) = (M, A f ) = (A∗M, f ). (8)

Thus we can write

f (0) =
∫

T (x) f (x) dx, (9)

where T is given by

T = A∗M. (10)

3. The imaging equation of a high-aperture confocal scanning system

Let us consider a three-dimensional fluorescent object and denote the distribution function of
its fluorescent centres by f (ρ; z) where z is the coordinate along the optic axis and ρ is a radial
vector perpendicular to it. For fluorescence microscopy, circularly polarized light can be used
and circular symmetry imposed. Under some reasonable assumptions [3], which we will not
detail here, the basic imaging equation of the scanning confocal microscope gives the intensity
distribution in the image plane as

g(ρ) =
∫

W2(|ρ − ρ′|; z′)W1(|ρ′|; z′) f (ρ′ ; z′) dρ′ dz′, (11)

where W1(|ρ|; z) and W2(|ρ|; z) are the rotationally symmetric point spread functions (PSFs)
(i.e. the time-averaged energy distributions in the focal region), respectively, of the illuminating
lens and the imaging lens. We shall consider here the confocal microscope working in the
epifluorescence mode with a single unaberrated lens, of opening semi-angle α, used both for
illumination and imaging, so that

W1(ρ; z) = W2(ρ; z) ≡ W (ρ; z). (12)

For lenses with high numerical apertures, we must use the full expression for the PSF W (ρ; z),
derived first in [8] as

W (ρ; z) = |I0(ρ; z)|2 + 2|I1(ρ; z)|2 + |I2(ρ; z)|2, (13)

where

I0(ρ; z) =
∫ α

0

√
cos θ sin θ(1 + cos θ)J0

(
sin θ

sin α
ρ

)
exp

{
i

cos θ

sin2 α
z

}
dθ, (14)

I1(ρ; z) =
∫ α

0

√
cos θ sin2 θ J1

(
sin θ

sin α
ρ

)
exp

{
i

cos θ

sin2 α
z

}
dθ, (15)

I2(ρ; z) =
∫ α

0

√
cos θ sin θ(1 − cos θ)J2

(
sin θ

sin α
ρ

)
exp

{
i

cos θ

sin2 α
z

}
dθ. (16)
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The most important property of W (ρ; z) is that its Fourier transform

Ŵ (ω; η) =
∫

R3
W (ρ; z) exp[−i(ρω + ηz)] dρ dz (17)

= 2π

∫ +∞

0
ρ dρ

∫ +∞

−∞
dz J0(ωρ)e−iηz W (ρ, z), (18)

where ω = (ω1, ω2) is bounded, with support contained within a cylinder

|ω| � �⊥, |η| � �‖, (19)

where

�⊥ = 2π, �‖ = π

1 + cos α
. (20)

It can be shown that ĝ(ω) has its support in the circle |ω| � �⊥ and that f̂ (ω; η) has its
support in the cylinder |ω| � 2�⊥, |η| � 2�‖. Using these properties it can be demonstrated
that the integral operator A of (11) is of the Hilbert–Schmidt class and therefore is compact.
Thus T in (10) is a smoothing operator.

We now need to find the function f (ρ′; z′) for a given g. In fact, as mentioned above,
since scanning is involved, it is sufficient to recover only f (0; 0), i.e. the value of the object
at the confocal point. Complete reconstruction of f can then be achieved by repeating this
procedure at each scanning position. In order to solve the Fredholm equation (11) we consider
its singular system, given by the solutions of equations (3).

The adjoint A∗ of A is given by

(A∗g)(ρ; z) = W (ρ; z)
∫

W (|ρ − ρ′|; z) g(ρ′) dρ′. (21)

As explained above, the singular system of A is found by numerical computation and we can
then reconstruct the object on the optical axis using the relations

f (0; 0) =
∫

M(ρ′)g(ρ′) dρ′, (22)

where the optical mask is given by

M(ρ) =
K−1∑
k=0

1

αk
uk(0; 0)vk(ρ), (23)

where the series is truncated after K terms. This has the form of an oscillating ring system—see
figure 1—and thus the integration in (22) requires the subtraction of some areas of the image
from the rest.

In fluorescence microscopy we have no phase information and so we use a mask which
both transmits and reflects. Two integrating detectors and an electronic subtractor process the
transmitted and reflected components. The mask is made elliptical, to be placed at 45◦ to the
optical axis and so present a circular cross-section to the incident light. A schematic diagram
of this arrangement is shown in figure 2.

The image-plane mask may be conveniently fabricated as a ‘binary-coded’ version of the
calculated continuous mask with aluminium rings deposited on a silica flat. The binary ring
pattern of the mask is devised to emulate the continuous profile of the calculated mask with
sufficient accuracy to preserve the resolving power of the microscope while still being easy to
manufacture [9]. A diagram of the mask is shown in figure 3.

First images of a field of 100 nm diameter fluorescent calibration PVC spheres (Molecular
Probes Ltd, Eugene, OR), are shown in figure 4 using an adapted commercial Bio-Rad
MRC 600 scanning microscope in three imaging modalities, namely, type I (conventional
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Figure 1. The calculated amplitude of the image-plane mask; ρ is the radial coordinate in optical
units.

 PMT1

P
M
T
2

      Difference

Mask

Output

Image plane

Input

Figure 2. A schematic diagram of the image-plane mask arrangement.

microscopy), confocal and our image-plane mask scheme. A numerical aperture of 1.3 was
used with 488 nm radiation. The leftmost sphere may be out of focus or at the edge of a scanning
line. The insets show profiles taken across the two spheres near the bottom left corner. The
progressive relative increase in resolution of the particles, from a full width of 12 pixels for
the type I case down to 9 and 6 pixels, respectively, for the confocal and mask-detector cases
is quite spectacular. However, absolute calibration is not yet available.

To obtain the results of figure 4 the collection and subtraction of the images from the mask
was done using the in-built command language macros of the microscope. Further work is
being done to implement these processes using an electronic subtraction circuit which will
provide images much more quickly. When this has been completed we will be in a position
to quantify accurately the resolution in absolute terms. We may then investigate the limits
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Figure 3. Binary realization of the image-plane mask.

Figure 4. Images of 100 nm PVC calibration spheres.

of application of the method to the accurate determination of particle size and to study, for
example, the effects of hydration and other microscopic details of interest.
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